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ABSTRACT :

In this paper we give overview results about the
Bourgain, Brezis, and Mironescu theorem regarding

limiting embeddings of fractional Sobolev spaces. We

KEYWORDS- give this theorem on the asymptotic behaviour of the
norm of the Sobolev-type embedding operator :

embeddings W,y oM o L/ 0-(-") g5 e 1 0and 1 — ¢ 1

Sobolev spaces, _

) n/(1 + €). We extended results of this theorem for all

Bourgain

values of 1 —¢ € (0,1).
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INTRDUCTION
If (1 —¢) € (0,1) and & = 0.We have the space W, ~*'**(R™) as the completion of

_ 1+e 1/(1+¢)
lutx)—u @)l ) . We also need the space

CBO(RH) in the norm (f n f n de dy
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W/5*%(Q) of functions defined on the cube Q = {x € R™: |x;| < 1/2,1 < i < n} which

are orthogonal to 1 with the finite norm
1/(1+€)

_ 1+¢
J lu(x) — u(y)| dx d

x — y|nt(1-e)(1+e)
a4 XVl

The main result by Bourgain et al. [2][3] is the inequality

1 1
Il < c(n) (S ®

€
(n—(1—-¢?))" i
where u € W!**¥(Q),0 < e < %, 1-¢?<n q=n(1+¢)/(n—(1—-¢%)) and c(n)
depends on n.

The present article is a direct outgrowth of this result. Figuring out a similar
estimate for functions in Wol_‘g'”g(R“), valid for the whole interval 0 < £ < 1, one could
anticipate the appearance of the factor ¢(1 — ¢) in the right-hand side, since the norm in
Wol_g'”‘g(R“) blows up bothas ¢ T 2 and € | 1, firstly we give Hardy-type inequalities.
Theorem 1. Letn>1, 0 <e< 1,and 1 — & < n. Then, for an arbitrary function
u € Wy “*¢(R™M), there holds

d 1-
f lu(x)[1+ |x|1X <cln 1+ _8((1 - :2)))“8 Il -cnsegn )
Rl'l

—2

Proof. Let
y(h) =1 -7 'n(n + (1 - |h])y,
where h € R" and plus stands for the nonnegative part of a real-valued function.

We introduce the standard extension of u onto

Riﬂ ={(x2z) :x€R"z>0}U(x,2) == fw(h)u(x + zh)dh.
Rn
n(n+1)(n+2)

zl(1—e)n 1] f|h|<1|u(x +zh) —u(x)|dh.

A routine majoration implies |[VU(x,z)| <

Hence and by Holder’s inequality one has

(n+ DM*e(n + 2)1*e

n
—1+e(1 1
f jZ +e( +g)|VU(X,Z)| *edx dz Sm
0 R"

X f 72(*-2) f flu(x + zh) —u(®)|'**dx dh dz. (3)
0 [h]<1R"

Setting n = zh and changing the order of integration, one can rewrite (3) as
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j JZ_1+8(1+8)|VU(X,Z)|1+8dX dz
0 R"

n(n+ D™(n+2)™* lu(x) —u@)|'*
1A= (1 -€%) +n) |x — y|n+1=)
R" R"

dx dy. (4)

By Hardy’s inequality,

X VA 1 X
fol 'Z(SZ—Z)UO () dt| Tz < (1—¢)~(+3 fol | =1+6049) | o(2) |1** dz one has

x|

lu(x)| ¢ _ lu(x)|1*e
—|X|1_82 =¢(1 +8)f vA 1+8(1+8)dz—|xll+8
0
¢ (10U ueon )
X,
<e(l+ S)J 22 dz J |— (X,’L')l + ZAR
) ) ot [x]

x|

1+e
< ed+e) z~1+e(1+e) <|6—U (x, Z)| + UG, Z)> dz.

T (1—g)lte 0z B{
0
Now, the integration over R" and Minkowski’s inequality imply
luCx)|'*
|X|1—82
" . 1/(1+¢)
e(1+¢) tre(14e) [OU e
Sm ffz &( S)E(X,Z) dz dx
R" 0
1+e
+A , (5)
. 1/(1+¢)
Where A := (f n f0| lZ_1+8(1+8)|X|_(1+8)|U(X, 2)|1*¢ dz dx) .

o __ U2+ :
Clearly, Al*e < 2(1+)/2 fR“ dx fo z - 1+e(1+e) mdz dx, which does not exceed
2(1+s)/2 f (COS e)—1+£(1+£)J|U|1+£p(n+£2—2) dp do, (6)

et 0
where p = (x? +z2)'/2,cos0 = z/p,dc is an element of the surface area on the unit
sphere (1 —¢)", and (1 — &)} is the upper half of (1 — ¢)".

Using Hardy’s inequality
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1+e 1+e . .
f |U|Hep+e’=2) dp<( Lte ) Jy |‘Z—[; pn~1+2(1+8) dp one arrives at the estimate

n—(1—¢2)
1 1+e
22(1
Alte < & ] fZ_1+8(1+g)|VU(X, Z)|1+s dx dz.
n—(1-z¢?)
0 n

Combining this with (5), one obtains

lu(x)[1+e e(1+¢) 25(1 + £) ([ .
— — ~1+8(1+2) 1+
|x|1-% X < ot 1+ —< n= (=) f fz ereIVU(x,z) | Tedx dz
R™ 0 R"
which, along with (5), gives
luGO|'*
—|X|1_8Z dx
€ 1+ ¢)(n+ 2(1 +¢))30+
= 2\)1 ( )( _1( ))1 ”u”1+18—8,1+8 ny- (7)
(m—A =€)+ |1 =g @A —-g)lte Wo (R")
In order to justify (2) we need to improve (2) for small values of (1 — ¢).
|(a—e)" 1| luGl e _ dy 1+
Clearly, 2(1—82)(1—82)fR“ |x|1-¢2 dx = Jon le-YlﬂIxIWlu(x)l " dx.
Since |x — y| > 2|x| implies 2]y|/3 < |x — y| < 2]y|, we obtain
1/(1+¢)
A—e)" 7 [ luE)[M*
2(1—52)(1 — 82) |X|1—82
Rn
1/(1+¢)
1+¢
ux)—u
= | I:—) |“+((}i)—|sz) dxdy
RY x—yl>x| Y
, 1/(1+¢)
3(-¢7) _ 1 u(v)|1+e
+la-om s Wl
20-H(1—g2) )yl
Rn
Hence,
1/(1+¢)

— 1/(1
(1 —e)n )\ *8)(1_(3(1_82) oy ([ lucor
2(1—52)(1 — 82) |X|1—82 X

< 2_1/(1+8) |IU|IW01—£,1+3(Rn).

Let & be an arbitrary number in (0,1). If (1 —g) < (4(1+¢))718'*, we

conclude
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|u(x)|1+s - 2(1—82)—1(1 _ 82)
S N [CE I DR
Rl’l

llullyf-ctve ey, (8)

Setting 8 = 271 and comparing this inequality with (6), we arrive at (2) with

c(n, (1 +¢)) = (1 — )" 1(n + 2(1 + £))30+) (1 4 g)3+e2(n+1)(n+2),

The proof is complete.

From Theorem 1. we shall deduce an inequality, analogous to (2), for functions defined on
the cube Q. Unlike (3), this inequality contains no factor s in the right-hand side, which is
not surprising, because, for smooth u, the norm ”l,lllwi—s,lﬂ:(Q) tends to a finite limit as
el 1.

Corollary 2. Let n>1, 0<e<1, and (1—¢?)<n. Then any function ue€

W51 (Q) satisfies

[tucor
Q

d—iz <c(n,(1+5¢))

1+e
wh G a oy M ©)

Proof. Let us preserve the notation u for the mirror extension of u € Wf"g'”s(Q) to the
cube 3Q, where aQ stands for the cube obtained from Q by dilation with the coefficient a.

We choose acut-off function n, equal to 1 on Q and vanishing outside 2Q, say,
n(x) = [, min {1, 2(1- xi)+}. By Theorem 1, it is enough to prove that
Il < (1= )7, (1 + )l o (10)

Clearly, the norm in the left-hand side is majorized by
1/(1+¢)

dxn(y)'* dy

f luG) —u@)'*

— yln+(1—¢2)
32 50 Ix —yl

1/(1+¢)

dx|u@)|'** dy

N f M) — @)+

— y|n+(1+£2)
3 XV

1/(1+¢)

d
i Zf f Y (oIt dx
IX — y|n+(1—£ )

3Q R™\3Q

The first term does not exceed 6"/ (1+8)”U”Wj—s.1+s(Q); the second term is not greater than
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1/(1+¢)

dy
2n'/? f .[WW(YNHE dy
3Q 3Q

i 1/(14€)
(1)
< n3*Hn/e <W lull 142y

and the third one is dominated by
1/(14€)

1/(1+¢)
dy - 2n+2+8 &
2 X — [0 lu(x)|* " dx < s lull,1+2(q)-

2Q [x—y[>1/2

Summing up these estimates, one obtains
||T'|U||W01—8,1+£(Rn) < 6m”u”W01_£’1+8(Q)
+n32+n/(1+g)(1 + 8)—1/(1+s)((1 _ 8)—1/(1+s) + 8_1/(1+8))||UI|L1+8(Q). (11)

Recalling that u L 1 on Q, one has forany z € Q

[l < [ [lu) — ueaxdy < 2% [1u6) - u@i* ax.
Q QQ Q

dz dz _Ja—en
Hence and by the obvious inequality IZQW > flz—x|<1/2 2 =079 s(11e)2e

201 +e)2 1+e
. Lteqe o 207 s(14e) luG)—u()|
where x € Q, it follows that [, [uG)|'"*dx < o] G hodoTomar ey 4x dz.

Thus, [lull1sqy < 22#7/C+9nl/2 (|(1—s)n—1|

lulhy-c1sscqy
Combining this inequality with (10), we justify (9) and hence complete the proof.
Now we give Sobolev embedding.

Theorem 3. Letn > 1,0 < &< 1,and 1 — &% < n. Then, for an arbitrary function
u € W, "**¢(R"), there holds

e(1—¢)
(n—(1-¢?)"
where g = n(1 +€)/(n — (1 — &2)) and c(n, (1 + €)) is a function of n and (1 + ¢).

lullia(eny < c(n, (1 +¢)) llullpiese gy, (12)

From Theorem 1, one can derive inequality (1) for all (1 —¢) € (0,1) with a constant ¢
depending both on n and (1 + ¢).

In the case € < 1/2 considered in [3], one has 1 < (1 + €) < 2n and therefore the
dependence of the constant c on (1 + €) can be eliminated.
Thus, we arrive at the Bourgain—Brezis—Mironescu result and extend it to the values
e<1/2.
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The proof given in [3] relies upon some advanced harmonic analysis and is quite
complicated. Our proof of (12) is straightforward and rather simple.

It is based upon an estimate of the best constant in a Hardy-type inequality for the
norm in Wy ~*1*¢(R™).
Proof: It is well known that the fractional Sobolev norm of order (1 —¢) € (0,1) is non-
increasing with respect to symmetric rearrangement of functions decaying to zero at
infinity (see [4], [5], [6], [7]).
Let v(|x|) denote the rearrangement of |u(x)|.
Then

llullpa ey

1/q

_ ~\n—1 z
= % J v()adae™) | (13)
0

where |(1 — &)" | is the area of the unit sphere (1 — £)" 1. Recalling that an arbitrary

non-negative non-increasing function f on the semi-axis (0, «) satisfies

0 0 t A1 e A
j f(O*d(t") < f j f(xydt | f(tdt = j fde], =1
0 0 \0 0
the right-hand side in (13) does not exceed
1/(1+¢)
_ ~\n-1 1/q ®
<|(1 ;5) |> fv(r)(1+s) d(rn—(l—sz))

0

(n — (1 — g2))/a+e) (e X e

— €

= nl/ql(l — 8)11—1 |(1—g)/n f V(le) |X|(1_82) .
Rn

We now see that (12) results from inequality (2 ).

Corollary 4. Letn > 1,0 <e < 1,and (1 — &%) < n.

Then any function u € W} **¢(Q) satisfies

1+e 1+¢
ulli gy < O (L + ) g =y Iellafervey

Theorem 5. For any functionu € Upc,«1 Wol_'g'”g(R“), there exists the limit
lim slullf-ciregey = 21+ )7L = )" llully egny.

Proof. Since d can be chosen arbitrarily small, inequality (9) implies
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P 1+¢ -1 _ -1 1+e
hngi_lmfs||u||W01—g,1+S(Rn) >2(1+e) (1 —¢e)" |||u||L1+g(Rn). (14)

Let us majorize the upper limit. By (14), it suffices to assume that u € L'*¢(R"). Clearly,
_ 1+¢
(1 8)||u||W01—s.1+s(Rn)

1/(1+¢)
dy
|x — y|n+(1—52)

<2{l@a-¢
RO ly[321x]

luG)[M** dx

1/(1+¢)\ (118
dx dy

|x — y|n+(1—£2)

+a-9 (e
R" ly[=2]x|
UG — uG)I

+2(1—¢) f X — y[ - dx dy.

R" |x|<|yl<2l|x|
The first term in braces does not exceed

1/(14¢)
dy
|X — y|n+(1—s

a-2 |

R" ly[=lx|

|(1 _ 8)n—1|1/(1+g) |u(X)|1+8 1/(1+2)
- (1 + £)1/0+ x| =D dx
Rn

5 lu(x)[**¢ dx

hence its limsup_, is dominated by |(1 — &)™~ [/(*9)(1 + 8)_1/(1+8)||U||L1+5(Rn).

The second term in braces is not greater than

) 1/(1+€)
+
(1- 8)1/(1+8) 2n+(1—82) —lu(y)l( ) d dx
|y|n+(1—82)
R" [x[<lyl/2
1/(1+¢)

_ a0 (A9 ) [ [ O

G G |
so it tends to zero as € L 1. We claim that

_ (1+¢)
u(x u
limi&up uGd —u®IE 2 4 4y = o, (15)

R" [xI<lyl<z[x]

By assumption of the theorem, u EWOT'”s(R“) for a certain t € (0,1). Let N be an
arbitrary number greater than 1 and let (1 — ¢) < 7. We have

lu(x) — u(y)|'**
2(1—¢) f X — yrHa-) dx dy

R™ [xI<lyl<2|x]|
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lu(x) —u(y)|'*
|X — y|n+r(1+g)

< 2(1 _ 8)N(1+8)(’[—(1—8))

R [x|<lyl<2[x|
[x—y|<N

lu(x) —u(y)|'**
|X — y|n+(1—82)

+2(1—¢) dx dy.

R" [xlI<lyl<2[x]
[x=y|>N

The first term in the right-hand side tends to zero as € | 1 and the second one does not

exceed

dy
|X — y|n+(1—£

28+2(1 _ 8)
[x|>N/3 |x—y|>N

5 lu(x)|**¢dx < c(n, (1 + ¢€)) J lu()|1+ dx,
|x|>N/3

which is arbitrarily small if N is sufficiently large. The proof is complete.
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