International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 2, February 2020,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

LIMITING IMBEDDINGS OF FRACTIONAL SOBOLEV SPACES

ABDALGADIR ALBUSHRA AND MUNTASIR SUHAIL D.S.

Author correspondence:

- (1) Sudan University of Science and Technology. College of Education, Department of Mathematics, Sudan.
- (2) Qassim University . College of Science & arts , Department of Mathematics, Saudi Arabia.
- (3) University of Bakht Er-ruda . College of Education , Department of Mathematics, Sudan.

INTRDUCTION

If $(1-\epsilon) \in (0,1)$ and $\epsilon \geq 0$. We have the space $\mathcal{W}_0^{1-\epsilon,1+\epsilon}(R^n)$ as the completion of $C_0^\infty(R^n)$ in the norm $\left(\int_{\mathbf{R}^n} \int_{\mathbf{R}^n} \frac{|u(x)-u(y)|^{1+\epsilon}}{|x-y|^{n+(1-\epsilon)(1+\epsilon)}} dx \, dy\right)^{1/(1+\epsilon)}$. We also need the space

 $\mathcal{W}_{\perp}^{1-\epsilon,1+\epsilon}(Q)$ of functions defined on the cube $Q = \{x \in R^n : |x_i| < 1/2, 1 \le i \le n\}$ which are orthogonal to 1 with the finite norm

$$\left(\int\limits_{Q}\int\limits_{Q}\frac{|u(x)-u(y)|^{1+\epsilon}}{|x-y|^{n+(1-\epsilon)(1+\epsilon)}}\mathrm{d}x\,\mathrm{d}y\right)^{1/(1+\epsilon)}.$$

The main result by Bourgain et al. [2][3] is the inequality

$$\|\mathbf{u}\|_{\mathbf{L}^{q}(\mathbb{Q})}^{1+\epsilon} \le c(\mathbf{n}) \frac{\epsilon}{(\mathbf{n} - (1-\epsilon^2))^{\epsilon}} \|\mathbf{u}\|_{\mathcal{W}_{\perp}^{1-\epsilon,1+\epsilon}(\mathbb{Q})}^{1+\epsilon}, \tag{1}$$

where $\mathbf{u} \in \mathcal{W}_{\perp}^{1-\epsilon,1+\epsilon}(\mathbf{Q}), 0 < \epsilon \leq \frac{1}{2}, 1-\epsilon^2 < n, \ q = n(1+\epsilon)/(n-(1-\epsilon^2))$ and $\mathbf{c}(\mathbf{n})$ depends on \mathbf{n} .

The present article is a direct outgrowth of this result. Figuring out a similar estimate for functions in $\mathcal{W}_0^{1-\epsilon,1+\epsilon}(R^n)$, valid for the whole interval $0 < \epsilon < 1$, one could anticipate the appearance of the factor $\epsilon(1-\epsilon)$ in the right-hand side, since the norm in $\mathcal{W}_0^{1-\epsilon,1+\epsilon}(R^n)$ blows up both as $\epsilon \uparrow 2$ and $\epsilon \downarrow 1$, firstly we give Hardy-type inequalities.

Theorem 1. Let $n \ge 1$, $0 \le \varepsilon < 1$, and $1 - \varepsilon^2 < n$. Then, for an arbitrary function $u \in \mathcal{W}_0^{1-\varepsilon,1+\varepsilon}(\mathbb{R}^n)$, there holds

$$\int\limits_{\mathbf{R}^n} |u(x)|^{1+\epsilon} \frac{dx}{|x|^{1-\epsilon^2}} \le c(n, 1+\epsilon) \frac{\epsilon(1-\epsilon)}{(n-(1-\epsilon^2))^{1+\epsilon}} \|u\|_{\mathcal{W}_0^{1-\epsilon, 1+\epsilon}(\mathbf{R}^n)}^{1+\epsilon}. \tag{2}$$

Proof. Let

$$\psi(h) = |(1 - \epsilon)^{n-1}|^{-1}n(n+1)(1 - |h|)_+,$$

where $h \in \mathbb{R}^n$ and plus stands for the nonnegative part of a real-valued function.

We introduce the standard extension of u onto

$$R^{n+1}_+ = \{(x,z): x \in R^n, z > 0\} \\ U(x,z) \coloneqq \int\limits_{\mathbf{R}^n} \psi(h) u(x+zh) dh.$$

A routine majoration implies $|\nabla U(x,z)| \le \frac{n(n+1)(n+2)}{z|(1-\epsilon)^{n-1}|} \int_{|h|<1} |u(x+zh)-u(x)| dh$.

Hence and by Hölder's inequality one has

$$\int\limits_0^\infty \int\limits_{\mathbf{R}^n} z^{-1+\epsilon(1+\epsilon)} |\nabla U(x,z)|^{1+\epsilon} dx \, dz \le \frac{n}{|(1-\epsilon)^{n-1}|} (n+1)^{1+\epsilon} (n+2)^{1+\epsilon}$$

$$\times \int_{0}^{\infty} z^{(\varepsilon^{2}-2)} \int_{|h|<1} \int_{\mathbf{p}^{n}} |u(x+zh) - u(x)|^{1+\varepsilon} dx dh dz. \quad (3)$$

Setting $\eta = zh$ and changing the order of integration, one can rewrite (3) as

$$\int_{0}^{\infty} \int_{\mathbf{R}^{n}} z^{-1+\epsilon(1+\epsilon)} |\nabla U(x,z)|^{1+\epsilon} dx dz$$

$$\leq \frac{n(n+1)^{1+\epsilon}(n+2)^{1+\epsilon}}{|(1-\epsilon)^{n-1}|((1-\epsilon^{2})+n)} \int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} \frac{|u(x)-u(y)|^{1+\epsilon}}{|x-y|^{n+(1-\epsilon^{2})}} dx dy. \tag{4}$$

By Hardy's inequality,

$$\begin{split} \int_0^{|x|} z^{(\epsilon^2-2)} \Big| \int_0^z \phi(\tau) \; dt \Big|^{1+\epsilon} dz &\leq (1-\epsilon)^{-(1+\epsilon)} \int_0^{|x|} z^{-1+\epsilon(1+\epsilon)} |\phi(z)|^{1+\epsilon} \; dz \; \text{one has} \\ & \frac{|u(x)|^{1+\epsilon}}{|x|^{1-\epsilon^2}} = \epsilon (1+\epsilon) \int_0^{|x|} z^{-1+\epsilon(1+\epsilon)} dz \frac{|u(x)|^{1+\epsilon}}{|x|^{1+\epsilon}} \\ &\leq \epsilon (1+\epsilon) \int_0^{|x|} z^{(\epsilon^2-2)} dz \Biggl(\int_0^z \left(\left| \frac{\partial U}{\partial \tau}(x,\tau) \right| + \frac{|U(x,\tau)|}{|x|} \right) d\tau \Biggr)^{1+\epsilon} \\ &\leq \frac{\epsilon (1+\epsilon)}{(1-\epsilon)^{1+\epsilon}} \int_0^{|x|} z^{-1+\epsilon(1+\epsilon)} \left(\left| \frac{\partial U}{\partial z}(x,z) \right| + \frac{U(x,z)}{|x|} \right)^{1+\epsilon} dz \, . \end{split}$$

Now, the integration over Rⁿ and Minkowski's inequality imply

$$\int_{\mathbf{R}^{n}} \frac{|u(x)|^{1+\epsilon}}{|x|^{1-\epsilon^{2}}} dx$$

$$\leq \frac{\epsilon(1+\epsilon)}{(1-\epsilon)^{1+\epsilon}} \left(\left(\int_{\mathbf{R}^{n}} \int_{0}^{\infty} z^{-1+\epsilon(1+\epsilon)} \left| \frac{\partial U}{\partial z}(x,z) \right|^{1+\epsilon} dz dx \right)^{1/(1+\epsilon)} + A \right)^{1+\epsilon}, \quad (5)$$

Where $A \coloneqq \left(\int_{\mathbf{R}^n} \int_0^{|x|} z^{-1+\epsilon(1+\epsilon)} |x|^{-(1+\epsilon)} |U(x,z)|^{1+\epsilon} \, dz \, dx\right)^{1/(1+\epsilon)}$.

Clearly, $A^{1+\epsilon} \leq 2^{(1+\epsilon)/2} \int_{\mathbf{R}^n} dx \int_0^\infty z^{-1+\epsilon(1+\epsilon)} \frac{|U(x,z)|^{1+\epsilon}}{(x^2+z^2)^{(1+\epsilon)/2}} dz dx$, which does not exceed

$$2^{(1+\varepsilon)/2} \int_{(1-\varepsilon)^n_+} (\cos \theta)^{-1+\varepsilon(1+\varepsilon)} \int_0^\infty |\mathsf{U}|^{1+\varepsilon} \rho^{(n+\varepsilon^2-2)} \, \mathrm{d}\rho \, \mathrm{d}\sigma, \tag{6}$$

where $\rho = (x^2 + z^2)^{1/2}$, $\cos \theta = z/\rho$, $d\sigma$ is an element of the surface area on the unit sphere $(1 - \varepsilon)^n$, and $(1 - \varepsilon)^n_+$ is the upper half of $(1 - \varepsilon)^n$.

Using Hardy's inequality

 $\int_0^\infty |U|^{1+\epsilon} \rho^{(n+\epsilon^2-2)} \, d\rho \le \left(\frac{1+\epsilon}{n-(1-\epsilon^2)}\right)^{1+\epsilon} \int_0^\infty \left|\frac{\partial U}{\partial \rho}\right|^{1+\epsilon} \rho^{n-1+\epsilon(1+\epsilon)} \, d\rho, \text{one arrives at the estimate}$

$$A^{1+\epsilon} \leq \left(\frac{2^{\frac{1}{2}}(1+\epsilon)}{n-(1-\epsilon^2)}\right)^{1+\epsilon} \int_{0}^{\infty} \int_{\mathbf{R}^n} z^{-1+\epsilon(1+\epsilon)} |\nabla U(x,z)|^{1+\epsilon} dx dz.$$

Combining this with (5), one obtains

$$\int\limits_{\mathbf{R}^n} \frac{|u(x)|^{1+\epsilon}}{|x|^{1-\epsilon^2}} \, dx \leq \frac{\epsilon(1+\epsilon)}{(1-\epsilon)^{1+\epsilon}} \left(1 + \frac{2^{\frac{1}{2}}(1+\epsilon)}{n-(1-\epsilon^2)}\right)^{1+\epsilon} \int\limits_{0}^{\infty} \int\limits_{\mathbf{R}^n} z^{-1+\epsilon(1+\epsilon)} |\nabla U(x,z)|^{1+\epsilon} dx \, dz$$

which, along with (5), gives

$$\int\limits_{\mathbf{P}^n} \frac{|u(x)|^{1+\epsilon}}{|x|^{1-\epsilon^2}} \ dx$$

$$\leq \frac{\varepsilon}{(n-(1-\varepsilon^2))^{1+\varepsilon}} \frac{(1+\varepsilon)(n+2(1+\varepsilon))^{3(1+\varepsilon)}}{|(1-\varepsilon)^{n-1}|(1-\varepsilon)^{1+\varepsilon}} ||\mathbf{u}||_{\mathcal{W}_0^{1-\varepsilon,1+\varepsilon}(\mathbf{R}^n)}^{1+\varepsilon}. \tag{7}$$

In order to justify (2) we need to improve (2) for small values of $(1 - \varepsilon)$.

Clearly,
$$\frac{|(1-\varepsilon)^{n-1}|}{2^{(1-\varepsilon^2)}(1-\varepsilon^2)} \int_{\mathbf{R}^n} \frac{|u(x)|^{1+\varepsilon}}{|x|^{1-\varepsilon^2}} dx = \int_{\mathbf{R}^n} \int_{|x-y|>2|x|} \frac{dy}{|x-y|^{n+(1-\varepsilon^2)}} |u(x)|^{1+\varepsilon} dx.$$

Since |x - y| > 2|x| implies 2|y|/3 < |x - y| < 2|y|, we obtain

$$\begin{split} \left(\frac{|(1-\epsilon)^{n-1}|}{2^{(1-\epsilon^2)}(1-\epsilon^2)} \int\limits_{\mathbf{R}^n} \frac{|u(x)|^{1+\epsilon}}{|x|^{1-\epsilon^2}} \; dx \right)^{1/(1+\epsilon)} \\ & \leq \left(\int\limits_{\mathbf{R}^n} \int\limits_{|x-y|>|x|} \frac{|u(x)-u(y)|^{1+\epsilon}}{|x-y|^{n+(1-\epsilon^2)}} \; dx \, dy \right)^{1/(1+\epsilon)} \\ & + \left(|(1-\epsilon)^{n-1}| \frac{3^{(1-\epsilon^2)}-1}{2^{(1-\epsilon^2)}(1-\epsilon^2)} \int\limits_{\mathbf{R}^n} \frac{|u(y)|^{1+\epsilon}}{|y|^{1-\epsilon^2}} \; dy \right)^{1/(1+\epsilon)}. \end{split}$$

Hence,

$$\begin{split} \left(\frac{|(1-\varepsilon)^{n-1}|}{2^{(1-\varepsilon^2)}(1-\varepsilon^2)}\right)^{1/(1+\varepsilon)} \left(1-\left(3^{(1-\varepsilon^2)}-1\right)^{1/(1+\varepsilon)}\right) \left(\int\limits_{\mathbf{R}^n} \frac{|u(x)|^{1+\varepsilon}}{|x|^{1-\varepsilon^2}} dx\right)^{1/(1+\varepsilon)} \\ & \leq 2^{-1/(1+\varepsilon)} \|u\|_{\mathcal{W}_0^{1-\varepsilon,1+\varepsilon}(\mathbf{R}^n)}. \end{split}$$

Let δ be an arbitrary number in (0,1). If $(1-\epsilon) \le (4(1+\epsilon))^{-1}\delta^{1+\epsilon}$, we conclude

$$\int_{\mathbf{R}^{n}} \frac{|u(x)|^{1+\epsilon}}{|x|^{1-\epsilon^{2}}} dx \le \frac{2^{(1-\epsilon^{2})-1}(1-\epsilon^{2})}{|(1-\epsilon)^{n-1}|(1-\delta)^{1+\epsilon}} ||u||_{\mathcal{W}_{0}^{1-\epsilon,1+\epsilon}(\mathbf{R}^{n})}^{1+\epsilon}.$$
(8)

Setting $\delta = 2^{-1}$ and comparing this inequality with (6), we arrive at (2) with

$$c(n, (1+\varepsilon)) = |(1-\varepsilon)^{n-1}|^{-1}(n+2(1+\varepsilon))^{3(1+\varepsilon)}(1+\varepsilon)^{3+\varepsilon}2^{(n+1)(n+2)}.$$

The proof is complete.

From Theorem 1. we shall deduce an inequality, analogous to (2), for functions defined on the cube Q. Unlike (3), this inequality contains no factor s in the right-hand side, which is not surprising, because, for smooth u, the norm $\|u\|_{\mathcal{W}^{1-\epsilon,1+\epsilon}_{\perp}(Q)}$ tends to a finite limit as $\epsilon \downarrow 1$.

Corollary 2. Let $n \ge 1$, $0 \le \varepsilon < 1$, and $(1 - \varepsilon^2) < n$. Then any function $u \in \mathcal{W}_{\perp}^{1-\varepsilon,1+\varepsilon}(\mathbb{Q})$ satisfies

$$\int_{0} |u(x)|^{1+\epsilon} \frac{dx}{|x|^{1-\epsilon^{2}}} \le c(n, (1+\epsilon)) \frac{\epsilon}{(n-(1-\epsilon^{2}))^{1+\epsilon}} ||u||_{\mathcal{W}_{\perp}^{1-\epsilon, 1+\epsilon}(\mathbb{Q})}^{1+\epsilon}. \tag{9}$$

Proof. Let us preserve the notation u for the mirror extension of $u \in \mathcal{W}_{\perp}^{1-\epsilon,1+\epsilon}(Q)$ to the cube 3Q, where aQ stands for the cube obtained from Q by dilation with the coefficient a. We choose acut-off function η , equal to 1 on Q and vanishing outside 2Q, say,

$$\begin{split} \eta(x) &= \prod_{i=1}^n \min \left\{ 1, 2 \Big(1 - x_i \Big)_+ \right\} \text{. By Theorem 1, it is enough to prove that} \\ & \| \eta u \|_{\mathcal{W}_0^{1-\epsilon,1+\epsilon}(\mathbf{R}^n)}^{1+\epsilon} \leq (1-\epsilon)^{-1} c(n,(1+\epsilon)) \| u \|_{\mathcal{W}_1^{1-\epsilon,1+\epsilon}(O)}^{1+\epsilon}. \end{split} \tag{10}$$

Clearly, the norm in the left-hand side is majorized by

$$\begin{split} \left(\int\limits_{3Q} \int\limits_{3Q} \frac{|u(x) - u(y)|^{1+\epsilon}}{|x - y|^{n + (1 - \epsilon^2)}} dx \, \eta(y)^{1+\epsilon} \, dy \right)^{1/(1+\epsilon)} \\ + \left(\int\limits_{3Q} \int\limits_{3Q} \frac{|\eta(x) - \eta(y)|^{1+\epsilon}}{|x - y|^{n + (1 + \epsilon^2)}} dx |u(y)|^{1+\epsilon} \, dy \right)^{1/(1+\epsilon)} \\ + \left(2 \int\limits_{3Q} \int\limits_{\mathbf{R}^{n} \setminus 2Q} \frac{dy}{|x - y|^{n + (1 - \epsilon^2)}} |(\eta u)(x)|^{1+\epsilon} \, dx \right)^{1/(1+\epsilon)}. \end{split}$$

The first term does not exceed $6^{n/(1+\epsilon)}\|u\|_{\mathcal{W}^{1-\epsilon,1+\epsilon}_{l}(Q)}$; the second term is not greater than

$$2n^{1/2} \left(\int_{3Q} \int_{3Q} \frac{dy}{|x - y|^{n - \epsilon}} |u(y)|^{1 + \epsilon} dy \right)^{1/(1 + \epsilon)}$$

$$\leq n3^{2 + n/(1 + \epsilon)} \left(\frac{|(1 - \epsilon)^{n - 1}|}{\epsilon (1 + \epsilon)} \right)^{1/(1 + \epsilon)} ||u||_{L^{1 + \epsilon}(Q)},$$

and the third one is dominated by

$$\left(2\int\limits_{20}\int\limits_{|x-y|>1/2}\frac{dy}{|x-y|^{n+(1-\epsilon^2)}}|u(x)|^{1+\epsilon}\,dx\right)^{1/(1+\epsilon)}\leq \left(\frac{2^{n+2+\epsilon}}{sp}\right)^{1/(1+\epsilon)}\|u\|_{L^{1+\epsilon}(Q)}.$$

Summing up these estimates, one obtains

$$\begin{split} \|\eta u\|_{\mathcal{W}_{0}^{1-\epsilon,1+\epsilon}(\mathbf{R}^{n})} &\leq 6^{\frac{n}{1+\epsilon}} \|u\|_{\mathcal{W}_{0}^{1-\epsilon,1+\epsilon}(\mathbb{Q})} \\ &+ n3^{2+n/(1+\epsilon)} (1+\epsilon)^{-1/(1+\epsilon)} \big((1-\epsilon)^{-1/(1+\epsilon)} + \epsilon^{-1/(1+\epsilon)} \big) \|u\|_{L^{1+\epsilon}(\mathbb{Q})}. \end{split} \tag{11}$$

Recalling that $u \perp 1$ on Q, one has for any $z \in Q$

$$\int\limits_0 |u(x)|^{1+\epsilon} dx \leq \int\limits_0 \int\limits_0 |u(x)-u(y)|^{1+\epsilon} dx \, dy \leq 2^{1+\epsilon} \int\limits_0 |u(x)-u(z)|^{1+\epsilon} \, dx \, .$$

Hence and by the obvious inequality $\int_{2Q} \frac{dz}{|x-z|^{n-\varepsilon(1+\varepsilon)}} > \int_{|z-x|<1/2} \frac{dz}{|x-z|^{n-\varepsilon(1+\varepsilon)}} = \frac{\left|(1-\varepsilon)^{n-1}\right|}{\varepsilon(1+\varepsilon)^{2\varepsilon(1+\varepsilon)^2}}$

where
$$x \in Q$$
, it follows that $\int_{Q} |u(x)|^{1+\epsilon} dx \leq \frac{2^{(1+\epsilon)^2} \epsilon (1+\epsilon)}{|(1-\epsilon)^{n-1}|} \int_{2Q} \int_{Q} \frac{|u(x)-u(z)|^{1+\epsilon}}{|x-z|^{n-\epsilon(1+\epsilon)}} dx dz$.

Thus,
$$\|u\|_{L^{1+\epsilon}(Q)} \le 2^{2+n/(1+\epsilon)} n^{1/2} \left(\frac{\epsilon(1+\epsilon)}{|(1-\epsilon)^{n-1}|}\right)^{1/(1+\epsilon)} \|u\|_{\mathcal{W}^{1-\epsilon,1+\epsilon}_{\perp}(Q)}.$$

Combining this inequality with (10), we justify (9) and hence complete the proof.

Now we give Sobolev embedding.

Theorem 3. Let $n \ge 1$, $0 \le \varepsilon < 1$, and $1 - \varepsilon^2 < n$. Then, for an arbitrary function $u \in \mathcal{W}_0^{1-\varepsilon,1+\varepsilon}(\mathbf{R}^n)$, there holds

$$\|\mathbf{u}\|_{\mathbf{L}^{q}(\mathbf{R}^{n})}^{1+\varepsilon} \le c(\mathbf{n}, (1+\varepsilon)) \frac{\varepsilon(1-\varepsilon)}{(\mathbf{n}-(1-\varepsilon^{2}))^{\varepsilon}} \|\mathbf{u}\|_{\mathcal{W}_{0}^{1-\varepsilon,1+\varepsilon}(\mathbf{R}^{n})}^{1+\varepsilon}, \tag{12}$$

where $q=n(1+\epsilon)/(n-(1-\epsilon^2))$ and $c(n,(1+\epsilon))$ is a function of n and $(1+\epsilon)$.

From Theorem 1, one can derive inequality (1) for all $(1 - \varepsilon) \in (0,1)$ with a constant c depending both on n and $(1 + \varepsilon)$.

In the case $\varepsilon \le 1/2$ considered in [3], one has $1 < (1 + \varepsilon) < 2n$ and therefore the dependence of the constant c on $(1 + \varepsilon)$ can be eliminated.

Thus, we arrive at the Bourgain–Brezis–Mironescu result and extend it to the values $\varepsilon \le 1/2$.

The proof given in [3] relies upon some advanced harmonic analysis and is quite complicated. Our proof of (12) is straightforward and rather simple.

It is based upon an estimate of the best constant in a Hardy-type inequality for the norm in $\mathcal{W}_0^{1-\epsilon,1+\epsilon}(R^n)$.

Proof: It is well known that the fractional Sobolev norm of order $(1 - \varepsilon) \in (0,1)$ is non-increasing with respect to symmetric rearrangement of functions decaying to zero at infinity (see [4], [5], [6], [7]).

Let v(|x|) denote the rearrangement of |u(x)|.

Then

 $\|\mathbf{u}\|_{\mathbf{L}^{\mathbf{q}}(\mathbf{R}^{\mathbf{n}})}$

$$= \left(\frac{|(1-\varepsilon)^{n-1}|}{n} \int_{0}^{\infty} v(r)^{q} d(r^{n})\right)^{1/q}, \tag{13}$$

where $|(1-\epsilon)^{n-1}|$ is the area of the unit sphere $(1-\epsilon)^{n-1}$. Recalling that an arbitrary non-negative non-increasing function f on the semi-axis $(0,\infty)$ satisfies

$$\int_{0}^{\infty} f(t)^{\lambda} d(t^{\lambda}) \leq \int_{0}^{\infty} \left(\int_{0}^{t} f(\tau) d\tau \right)^{\lambda-1} f(t) dt = \left(\int_{0}^{\infty} f(t) dt \right)^{\lambda}, \quad \lambda \geq 1$$

the right-hand side in (13) does not exceed

$$\begin{split} \left(\frac{|(1-\epsilon)^{n-1}|}{n}\right)^{1/q} & \left(\int\limits_0^\infty v(r)^{(1+\epsilon)} \; d\big(r^{n-(1-\epsilon^2)}\big)\right)^{1/(1+\epsilon)} \\ & = \frac{(n-(1-\epsilon^2))^{1/(1+\epsilon)}}{n^{1/q}|(1-\epsilon)^{n-1}|^{(1-\epsilon)/n}} \left(\int\limits_{\textbf{p}^n} v(|x|)^{(1+\epsilon)} \frac{dx}{|x|^{(1-\epsilon^2)}}\right)^{1/(1+\epsilon)}. \end{split}$$

We now see that (12) results from inequality (2).

Corollary 4. Let $n \ge 1$, $0 \le \varepsilon < 1$, and $(1 - \varepsilon^2) < n$.

Then any function $u \in W_1^{1-\epsilon,1+\epsilon}(Q)$ satisfies

$$\|u\|_{L^{1+\epsilon}(\mathbb{Q})}^{1+\epsilon} \leq c(n,(1+\epsilon)) \frac{\epsilon}{(n-(1-\epsilon^2))^{\epsilon}} \|u\|_{\mathcal{W}_{\perp}^{1-\epsilon,1+\epsilon}(\mathbb{Q})}^{1+\epsilon}.$$

Theorem 5. For any function $u \in \bigcup_{0<\epsilon<1} \mathcal{W}_0^{1-\epsilon,1+\epsilon}(R^n)$, there exists the limit

$$\lim_{\epsilon\downarrow 1}s\|u\|_{\mathcal{W}_0^{1-\epsilon,1+\epsilon}(\mathbf{R}^n)}^{1+\epsilon}=2(1+\epsilon)^{-1}|(1-\epsilon)^{n-1}|\|u\|_{L^{1+\epsilon}(\mathbf{R}^n)}^{1+\epsilon}.$$

Proof. Since d can be chosen arbitrarily small, inequality (9) implies

$$\lim_{\epsilon \downarrow 1} \inf s \|u\|_{\mathcal{W}_{0}^{1-\epsilon,1+\epsilon}(\mathbf{R}^{n})}^{1+\epsilon} \ge 2(1+\epsilon)^{-1} |(1-\epsilon)^{n-1}| \|u\|_{L^{1+\epsilon}(\mathbf{R}^{n})}^{1+\epsilon}. \tag{14}$$

Let us majorize the upper limit. By (14), it suffices to assume that $u \in L^{1+\epsilon}(\mathbb{R}^n)$. Clearly,

$$\begin{split} &(1-\epsilon)\|u\|_{\mathcal{W}_{0}^{1-\epsilon,1+\epsilon}(\mathbf{R}^{n})}^{1+\epsilon} \\ &\leq 2 \left\{ \left((1-\epsilon) \int\limits_{\mathbf{R}^{n}} \int\limits_{|y| \geq 2|x|} \frac{dy}{|x-y|^{n+(1-\epsilon^{2})}} |u(x)|^{1+\epsilon} \, dx \right)^{1/(1+\epsilon)} \\ &+ \left((1-\epsilon) \int\limits_{\mathbf{R}^{n}} |u(y)|^{1+\epsilon} \int\limits_{|y| \geq 2|x|} \frac{dx \, dy}{|x-y|^{n+(1-\epsilon^{2})}} \right)^{1/(1+\epsilon)} \right\}^{(1+\epsilon)} \\ &+ 2(1-\epsilon) \int\limits_{\mathbf{R}^{n}} \int\limits_{|x| < |y| < 2|x|} \frac{|u(x)-u(y)|^{1+\epsilon}}{|x-y|^{n+(1-\epsilon^{2})}} dx \, dy \, . \end{split}$$

The first term in braces does not exceed

$$\begin{split} & \left((1 - \varepsilon) \int_{\mathbf{R}^{n}} \int_{|y| \ge |x|} \frac{dy}{|x - y|^{n + (1 - \varepsilon^{2})}} |u(x)|^{1 + \varepsilon} dx \right)^{1/(1 + \varepsilon)} \\ &= \frac{|(1 - \varepsilon)^{n - 1}|^{1/(1 + \varepsilon)}}{(1 + \varepsilon)^{1/(1 + \varepsilon)}} \left(\int_{\mathbf{R}^{n}} \frac{|u(x)|^{1 + \varepsilon}}{|x|^{(1 - \varepsilon^{2})}} dx \right)^{1/(1 + \varepsilon)} \end{split}$$

hence its $\limsup_{\epsilon\downarrow 1}$ is dominated by $|(1-\epsilon)^{n-1}|^{1/(1+\epsilon)}(1+\epsilon)^{-1/(1+\epsilon)}\|u\|_{L^{1+\epsilon}(\boldsymbol{R}^n)}.$

The second term in braces is not greater than

$$\begin{split} &(1-\epsilon)^{1/(1+\epsilon)} \left(2^{n+(1-\epsilon^2)} \int\limits_{\mathbf{R}^n} \frac{|u(y)|^{(1+\epsilon)}}{|y|^{n+(1-\epsilon^2)}} dy \int\limits_{|x|<|y|/2} dx \right)^{1/(1+\epsilon)} \\ &= 2^{(1-\epsilon)} \left(\frac{(1-\epsilon)}{(1+\epsilon)} \left|(1-\epsilon)^{n-1}\right|\right)^{1/(1+\epsilon)} \left(\int\limits_{\mathbf{R}^n} \frac{|u(y)|^{(1+\epsilon)}}{|y|^{1-\epsilon^2}} dy \right)^{1/(1+\epsilon)}, \end{split}$$

so it tends to zero as $\varepsilon \downarrow 1$. We claim that

$$\lim_{\epsilon \downarrow 1} \int_{\mathbf{R}^n} \int_{|x| < |y| < 2|x|} \frac{|u(x) - u(y)|^{(1+\epsilon)}}{|x - y|^{n + (1-\epsilon^2)}} dx dy = 0.$$
 (15)

By assumption of the theorem, $u \in \mathcal{W}_0^{\tau,1+\epsilon}(R^n)$ for a certain $\tau \in (0,1)$. Let N be an arbitrary number greater than 1 and let $(1-\epsilon) < \tau$. We have

$$2(1-\epsilon) \int\limits_{{\bf R}^n} \int\limits_{|x|<|y|<2|x|} \frac{|u(x)-u(y)|^{1+\epsilon}}{|x-y|^{n+(1-\epsilon^2)}} dx \, dy$$

$$\leq 2(1-\epsilon)N^{(1+\epsilon)(\tau-(1-\epsilon))} \int\limits_{\mathbf{R}^n} \int\limits_{\substack{|x|<|y|<2|x|\\|x-y|\leq N}} \frac{|u(x)-u(y)|^{1+\epsilon}}{|x-y|^{n+\tau(1+\epsilon)}} dx\,dy \\ + 2(1-\epsilon) \int\limits_{\mathbf{R}^n} \int\limits_{\substack{|x|<|y|<2|x|\\|x-y|>N}} \frac{|u(x)-u(y)|^{1+\epsilon}}{|x-y|^{n+(1-\epsilon^2)}} dx\,dy.$$

The first term in the right-hand side tends to zero as $\epsilon \downarrow 1$ and the second one does not exceed

$$2^{\epsilon+2}(1-\epsilon) \int\limits_{|x|>N/3} \int\limits_{|x-y|>N} \frac{dy}{|x-y|^{n+(1-\epsilon^2)}} |u(x)|^{1+\epsilon} dx \leq c(n,(1+\epsilon)) \int\limits_{|x|>N/3} |u(x)|^{1+\epsilon} \, dx \, ,$$

which is arbitrarily small if N is sufficiently large. The proof is complete.

REFERENCES

- [1] V. Maz'ya¹ and T. Shaposhnikova. On the Bourgain, Brezis, and Mironescu theorem concerning Limiting Embeddings of Fractional Sobolev Spaces. Journal of Functional Analysis 195, 230–238 (2002)
- [2] F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2, No. 4 (1989), 683–773.
- [3] J. Bourgain, H. Brezis, and P. Mironescu, Limiting embedding theorems for $\mathcal{W}^{s,p}$ when
- s \uparrow 1 and applications, to appear.
- [4] J. Bourgain, H. Brezis, and P. Mironescu, Another look at Sobolev spaces, to appear.
- [5] A. Cianchi, Rearrangements of functions in Besov spaces, Math. Nachr. 230 (2001),19–35.
- [6] G. H. Hardy, E. Littlewood, and G. Polya, Some simple inequalities satisfied by convex functions, Messenger Math. 58, No. 10 (1929), 145–152.
- [7] I. Wik, "Symmetric Rearrangement of Functions and Sets in Rⁿ;" Report No. 1, pp.
- 1–36, Department of Mathematics, University of Umea°, 1977.